Enantio-Relay Catalysis Constructs Chiral Biaryl Alcohols over Cascade Suzuki Cross-Coupling-Asymmetric Transfer Hydrogenation
نویسندگان
چکیده
The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.
منابع مشابه
Consecutive intramolecular hydroamination/asymmetric transfer hydrogenation under relay catalysis of an achiral gold complex/chiral Brønsted acid binary system.
Consecutive hydroamination/asymmetric transfer hydrogenation under relay catalysis of an achiral gold complex/chiral Brønsted acid binary system has been described for the direct transformation of 2-(2-propynyl)aniline derivatives into tetrahydroquinolines with high enantiomeric purity.
متن کاملChiral iridium(I) bis(NHC) complexes as catalysts for asymmetric transfer hydrogenation
The common use of NHC complexes in transition-metal mediated C–C coupling and metathesis reactions in recent decades has established N-heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC-containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of comp...
متن کاملRelay catalysis: combined metal catalyzed oxidation and asymmetric iminium catalysis for the synthesis of bi- and tricyclic chromenes.
A catalytic asymmetric oxidative iminium-allenamine cascade allows the use of propargyl alcohols as stable substrates and yields valuable chiral bicyclic 4H-chromenes. A subsequent Michael addition-condensation domino reaction provides complex tricyclic 4H-chromenes in a highly enantioselective fashion.
متن کاملChiral ferrocenyl diphosphines for asymmetric transfer hydrogenation of acetophenone
The synthesis of new optically pure ferrocenyl diphosphines have been realized from (R)-(+)-N,Ndimethylaminoethylferrocene. Particularly, dissymmetric ferrocenyl diphosphines have been synthesized. The diphosphines have been used as ligands in asymmetric transfer hydrogenation of acetophenone in the presence of Ru catalysts. © 2006 Elsevier Science. All rights reserved ——— * Corresponding autho...
متن کاملRemarkably diastereoselective synthesis of a chiral biphenyl diphosphine ligand and its application in asymmetric hydrogenation.
Essentially complete atropdiastereoselectivity was realized in the preparation of biaryl diphosphine dioxide by asymmetric intramolecular Ullmann coupling and oxidative coupling with central-to-axial chirality transfer. A bridged C(2)-symmetric biphenyl phosphine ligand possessing additional chiral centers on the linking unit of the biphenyl groups was synthesized. No resolution step was requir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014